摘要:對于考研數(shù)學(xué)來說,高數(shù)部分很重要,要想拿分,須把一些定理記牢。為此,幫幫整理了2021考研數(shù)學(xué):高數(shù)定理牢記(三)的文章,希望對大家有
作者
佚名
摘要:對于考研數(shù)學(xué)來說,高數(shù)部分很重要,要想拿分,須把一些定理記牢。為此,幫幫整理了“2021考研數(shù)學(xué):高數(shù)定理牢記(三)”的文章,希望對大家有所幫助。
中值定理與導(dǎo)數(shù)的應(yīng)用
1、定理(羅爾定理)
如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),且在區(qū)間端點的函數(shù)值相等,即f(a)=f(b),那么在開區(qū)間(a,b)內(nèi)至少有一點&xi(a
2、定理(拉格朗日中值定理)
如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),那么在開區(qū)間(a,b)內(nèi)至少有一點&xi(a
3、定理(柯西中值定理)
如果函數(shù)f(x)及F(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),且F’(x)在(a,b)內(nèi)的每一點處均不為零,那么在開區(qū)間(a,b)內(nèi)至少有一點&xi,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(&xi)/F’(&xi)成立。
4、洛達法則應(yīng)用條件只能用與未定型諸如0/0、&infin/&infin、0×&infin、&infin-&infin、00、1&infin、&infin0等形式。
5、函數(shù)單調(diào)性的判定法
設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),那么:(1)如果在(a,b)內(nèi)f’(x)>0,那么函數(shù)f(x)在[a,b]上單調(diào)增加(2)如果在(a,b)內(nèi)f’(x)
如果函數(shù)在定義區(qū)間上連續(xù),除去有限個導(dǎo)數(shù)不存在的點外導(dǎo)數(shù)存在且連續(xù),那么只要用方程f’(x)=0的根及f’(x)不存在的點來劃分函數(shù)f(x)的定義區(qū)間,就能保證f’(x)在各個部分區(qū)間內(nèi)保持固定符號,因而函數(shù)f(x)在每個部分區(qū)間上單調(diào)。
6、函數(shù)的極值
如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)有定義,x0是(a,b)內(nèi)的一個點,如果存在著點x0的一個去心鄰域,對于這去心鄰域內(nèi)的任何點x,f(x)f(x0)均成立,就稱f(x0)是函數(shù)f(x)的一個極小值。
在函數(shù)取得極值處,曲線上的切線是水平的,但曲線上有水平曲線的地方,函數(shù)不一定取得極值,即可導(dǎo)函數(shù)的極值點定是它的駐點(導(dǎo)數(shù)為0的點),但函數(shù)的駐點卻不一定是極值點。
定理(函數(shù)取得極值的要條件)設(shè)函數(shù)f(x)在x0處可導(dǎo),且在x0處取得極值,那么函數(shù)在x0的導(dǎo)數(shù)為零,即f’(x0)=0.定理(函數(shù)取得極值的第一種充分條件)設(shè)函數(shù)f(x)在x0一個鄰域內(nèi)可導(dǎo),且f’(x0)=0,那么:(1)如果當(dāng)x取x0左側(cè)臨近的值時,f’(x)恒為正當(dāng)x去x0右側(cè)臨近的值時,f’(x)恒為負,那么函數(shù)f(x)在x0處取得極大值(2)如果當(dāng)x取x0左側(cè)臨近的值時,f’(x)恒為負當(dāng)x去x0右側(cè)臨近的值時,f’(x)恒為正,那么函數(shù)f(x)在x0處取得極小值(3)如果當(dāng)x取x0左右兩側(cè)臨近的值時,f’(x)恒為正或恒為負,那么函數(shù)f(x)在x0處沒有極值。
定理(函數(shù)取得極值的第二種充分條件)設(shè)函數(shù)f(x)在x0處具有二階導(dǎo)數(shù)且f’(x0)=0,f’’(x0)&ne0那么:(1)當(dāng)f’’(x0)0時,函數(shù)f(x)在x0處取得極小值駐點有可能是極值點,不是駐點也有可能是極值點。
7、函數(shù)的凹凸性及其判定
設(shè)f(x)在區(qū)間Ix上連續(xù),如果對任意兩點x1,x2恒有f[(x1+x2)/2][f(x1)+f(x1)]/2,那么稱f(x)在區(qū)間Ix上圖形是凸的。
設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)具有一階和二階導(dǎo)數(shù),那么(1)若在(a,b)內(nèi)f’’(x)>0,則f(x)在閉區(qū)間[a,b]上的圖形是凹的(2)若在(a,b)內(nèi)f’’(x)
判斷曲線拐點(凹凸分界點)的步驟(1)求出f’’(x)(2)令f’’(x)=0,解出這方程在區(qū)間(a,b)內(nèi)的實根(3)對于(2)中解出的每一個實根x0,檢查f’’(x)在x0左右兩側(cè)鄰近的符號,如果f’’(x)在x0左右兩側(cè)鄰近分別保持一定的符號,那么當(dāng)兩側(cè)的符號相反時,點(x0,f(x0))是拐點,當(dāng)兩側(cè)的符號相同時,點(x0,f(x0))不是拐點。
在做函數(shù)圖形的時候,如果函數(shù)有間斷點或?qū)?shù)不存在的點,這些點也要作為分點。
?幫幫友情提示:干貨:2021考研數(shù)學(xué):高數(shù)牢記定理(二)
關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關(guān)心:
來考研幫提升效率