考研幫 > 數(shù)學 > 復習經(jīng)驗

高數(shù)10大高頻易錯點,注意別掉坑

  【摘要】以下10點是考研數(shù)學中高等數(shù)學部分的易錯點,希望對于處于復習備考初期階段的考生能夠有所幫助。

  1.函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點連續(xù),則該函數(shù)在該點必有極限。若函數(shù)在某點不連續(xù),則該函數(shù)在該點不一定無極限。

  2,若函數(shù)在某點可導,則函數(shù)在該點一定連續(xù)。但是如果函數(shù)不可導,不能推出函數(shù)在該點一定不連續(xù)。

  3.基本初等函數(shù)在其定義域內是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。

  4.在一元函數(shù)中,駐點可能是極值點,也可能不是極值點。函數(shù)的極值點必是函數(shù)的駐點或導數(shù)不存在的點。

  6.無窮小量與有界變量之積仍是無窮小量。

  7.可導是對定義域內的點而言的,處處可導則存在導函數(shù),只要一個函數(shù)在定義域內某一點不可導,那么就不存在導函數(shù),即使該函數(shù)在其它各處均可導。

  8.在求極限的問題中,極限包括函數(shù)的極限和數(shù)列的極限,但在考試中一般出的都是函數(shù)的極限,求函數(shù)的極限中,主要是掌握公式,有些不常見的公式一定要記熟,這種類型的題一般屬于簡單題,但往更難一點的方向出題的話,它會和變上限的定積分聯(lián)系在一起出題。

  9.在運用兩個重要極限求函數(shù)極限的時候,一定要首先把所求的式子變換成類似于兩個重要極限的形式,其次還需要看自變量的取極限的范圍是否和兩個重要極限一樣。

  10.介值定理和零點定理的巧妙運用關鍵在于,觀察和變換所要證明的式子的形式,構造輔助函數(shù)。

 ?。ㄎ沂菍嵙曅【幇材辏喝魏蔚南拗疲际菑淖约旱膬刃拈_始的)

關于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

考研幫地方站更多

你可能會關心:

來考研幫提升效率

× 關閉