數(shù)學(xué)證明題常常是大家失分較多的地方,要攻克證明題就要知道什么地方容易出證明題?,F(xiàn)在幫幫就帶大家看看高數(shù)中最容易出證明題的六大內(nèi)容。
作者
佚名
【摘要】數(shù)學(xué)證明題常常是大家失分較多的地方,要攻克證明題就要知道什么地方容易出證明題?,F(xiàn)在幫幫就帶大家看看高數(shù)中最容易出證明題的六大內(nèi)容。
一、數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。
二、微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。
六、積分與路徑無關(guān)的五個等價條件
這一部分是數(shù)一的考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。
以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時候重點歸納這類題目的解法。
(我是實習(xí)小編萬露,明天的成功是今天的奮斗和拼搏譜寫的金曲?。?/p>
關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關(guān)心:
來考研幫提升效率