2016年《全國碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱》今天正式亮相。為了幫助大家更好的進(jìn)行線性代數(shù)的備考,針對線性代數(shù)的每一章節(jié)的考試大綱特
作者
佚名
2016年《全國碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱》今天正式亮相。為了幫助大家更好的進(jìn)行線性代數(shù)的備考,針對線性代數(shù)的每一章節(jié)的考試大綱特地給出以下備考指南,希望能夠幫助大家考到自己理想的分?jǐn)?shù),進(jìn)入自己理想中的大學(xué)。
2016年有關(guān)數(shù)一、數(shù)二、數(shù)三的線性代數(shù)之矩陣的考試大綱考試內(nèi)容和考試要求與2015年沒有任何差別。
首先,數(shù)一對此章的考試內(nèi)容和考試要求如下:
考試內(nèi)容為:矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià)分塊矩陣及其運(yùn)算
考試要求為:1、理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì)。2、掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3、理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4、理解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。5、了解分塊矩陣及其運(yùn)算。
其次,數(shù)二對此章的考試內(nèi)容和考試要求如下:
考試內(nèi)容為:矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià)分塊矩陣及其運(yùn)算
考試要求為:1、理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì)。2、掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3、理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4、了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。5、了解分塊矩陣及其運(yùn)算。
最后,數(shù)三對此章的考試內(nèi)容和考試要求如下:
考試內(nèi)容為:矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià)分塊矩陣及其運(yùn)算
考試要求為:1、理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì)。2、掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3、理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4、了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。5、了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則。
從而可以看出,數(shù)一、數(shù)二和數(shù)三考察此章的內(nèi)容是一樣的,但對各個(gè)內(nèi)容的考試要求有些微的區(qū)別:數(shù)一對矩陣初等變換的概念的要求比數(shù)二和數(shù)三更高一些;數(shù)三對分塊矩陣的運(yùn)算法則的要求比數(shù)一和數(shù)二要求的更高一些。
?。▽?shí)習(xí)編輯:李冉)
關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗(yàn)_考研幫"有15名研友在考研幫APP發(fā)表了觀點(diǎn)
掃我下載考研幫
最新資料下載
2021考研熱門話題進(jìn)入論壇
考研幫地方站更多
你可能會關(guān)心:
來考研幫提升效率